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Abstract

Given a monotone function z(x) which connects two constant states,

uL < UR, (uL > UR) , we find the unique (up to a constant) convex (concave)

^

flux function, f(u), such that z(x/t) is the physically correct solution to

the associated Riemann problem. For z(x/t), an approximate Riemann solver to

a given conservation law, we derive simple necessary and sufficient conditions

for it to be consistent with any entropy inequality. Associated with any

member of a general class of consistent numerical fluxes, hf(UR,UL) , we have

an approximate Riemann solver defined through z(_) = (-d/d)hf (UR,UL) , where

^

f (u) = f(u) - _u. We obtain the corresponding f(u) via a Legendre

transform and show that it is consistent with all entropy inequalities iff

(UR,UL) is an E flux for each relevant _. Examples involving commonlyhf

used two point numerical fluxes are given, as are comparisons with related

wo re.
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O. Introduction

The aim of this paper is to identify an approximate solution to the Riemann

problem for hyperbolic systems of conservation laws with any of a wide class of

three point shock capturing algorithms used to approximate these laws. We also

wish to analyze consistency of this approximation with any analytic entropy condi-

tion. This procedure will be done here only for scalar conservation laws; systems

will be considered in the future.

We begin with an arbitrary monotone function,

stant states uL < uR, or

(concave) function, ](u),

Riemann problem

z(x), connecting two con-

UL > uR; we find the unique (up to a constant) convex

such that z(--X) is the solution to the associated
t

(o.l(a) ., + ](.),, = o, t > o

(O.1)(b) u(x,O) =" UL, x < 0

u(x,0)---uR, x > 0

which satisfiesKn_'kov's entropy condition[7],discussedin the next section.

The resultingformula involvesa Legendre transform.

For an arbitraryfluxfunctionf(u), we definean approximate Riemann

solver to

(0.2)(a) u, + f(U)x= 0

(0.2)(b) u(x,O) _ uL, x _ 0

u(x,O) _- uR, x > O,
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of conservation with (0.2). Under this circumstance we fred a simple geometric

criterion, relating the graphs of f and f, for such an approximation to be con-

sistent with any entropy condition.

Next, we introduce an approximate Riemann solver associated with any con-

sistent numerical flux function if hf satisfies a fairly nonrestrictive condition,

concerning its numerical viscosity. The corresponding _(u) is obtained through a

Legendre transform of the function hf_(uR,uL), with respect to _.

Here we define

(0.3)

This function of

ing with speed x =

f_,(U) = f(.) -- _..

is obtained by constructing the numerical flux on a grid mov-

er. We show that z(O is consistent with Kruz'kov's entropy

condition,[7],iff hf_(uR,uL)isan E flux(introducedin [11]).

We then illustrateour theory by presentingcxamplcs involvingallthe com-

monly used two pointnumerical fluxfunctions.

We conclude by comparing our approach to thatof Harten and Lax [5],and

Harten, Lax, and van Leer [6],in the scalarcase. (They alsodiscussedsystems.)

Wc arc motivated to study theseproblems because of theirconnectionwith

the classicwork of Glimm [3]. In thatpaper,he obtaineda celcbratedexistence

theorem for a classof hyperbolicsystems of conservationlaws whose initialdata

differsslightlyfrom a constantstate.His method of proof was constructive.He

representedthe approximate solutionsas piccewiseconstantat any time;they

wcre advanced in time by solvingexactlythe Ricmann problcm formcd by the

constantstatcsbctwccn two neighboringcells.The value of the approximationin
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each cell at the new time was taken to be the value of the exact solution at a ran-

domly chosen point in the cell. Glimm then proved the convergence of this

method.

Recently, the first author [1] modified Glimm's approach by replacing the

exact solution to the Riemann problem between two neighboring cells by the solu-

tion to the associated linear Riemann problem constructed by Roe [13]. This

linear Riemann problem changes from cell to cell, and its solution is consistent, in

the sense of conservation, with each of the true Riemann problems. Following,

but somewhat simplifying, Glimm's technique, for initial data of his type, a varia-

tion estimate is obtained for these approximate solutions. Using a theorem of

Harten-Lax [5], it follows that a new existence theorem for systems of equations

which may have fields which are neither linearly degenerate or genuinely non-

linear, as defined in [8], is obtained. Unfortunately, these limit solutions will

not, in general, satisfy the entropy condition of Lax [8]. Work is under way to

remedy this difficulty.

Roe's approximate Riemann solver was constructed as a step in the genera-

tion of a numerical flux for a conservation form, shock capturing method.

Nevertheless, it has proven to be useful theoretically in a random choice setting.

This fact motivates the present work.
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I. The Riemann Problem and Approximations

We shall consider approximations to the initial value problem for a scalar

hyperbolic equation

au a
(1.1)(a) "_-+ -_xf(")= o,

with specialinitialdata

t>O, -oo <x< °°

(1.1)(b) .(x,O) -- =z, x < 0
u(x,O)- uR,x>O

for arbitrary constants, uL, uR.

Solutions to the Riemann problem (1.1) are not unique. For physical rea-

sons, the limit solution of the viscous equation, as viscosity tends to zero, is

sought. This solution must satisfy the entropy inequality for all real c:

(1.2) A (u - c)+ + _ (f(u) - f(c))x(u - c)) _ 0
at ax

in the sense of distributions.

Here:

(1.3) (a)+ = max(a,O)

x(a) = 1 if a_eO

x(a) = 0 if a < O

This solution to (1.1), (1.2) is unique -- see e.g. Kruz'kov [7].

If f is strictly convex or concave, the solution is particularly simple, and

may be characterized by replacing (1.2) with a single entropy inequality, rather
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than the infinite family.

then be replaced by

If v(.) is any strictly convex function of a (1.2) may

(1.4)(a)

where

0.. V(u) + _ F(u) _ 0
at ax

(1.4)(b) F'(u) = V'(u)f'(u).

Inequalities (1.2) have important consequences for piecewise continuous solu-

tions. Suppose u(x,t) is such a solution having a jump discontinuity UL(t), UR(t),

moving with speed s(t). Then (1.2) implies the well known jump conditions

(1.5)

and Oleinik'scondition E

f("L)--f("R) = "("L -- "R)

across the shock:

f(.) -I(_R) I(.L)- fO'R)(1.6)

for all u between

U-- UR UL-- UR

uL and uR. We call the corresponding interval .re,L

•,"_ = {,, I_ ["L,"R]=_" _ max[uL,uR]}

If f is convex, then (1.6) is equivalent to the statement that characteristics

flow into the discontinuity as time increases.

In [1], the second author obtained the following formula for the solution to

(1.1), (1.2). Let _ = x/t. The solution is a function of _ defined by:
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THEOREM (1.1)

(1.7)(a)rf uL < uR, then

d max
u(_)= d-_-(,,_[,,_,"_1[_u - f(u)])

(1.7)(b)[f ur. > Ua, then

_-_ n_n [_u- :(.)1).u(_)= (u_[....._]

This result follows directly from the following:

LEMMA (1.1)

(1.8)(a) If uL < uR, then

[u([) - f(u([)) = max [/_u- f(u)].
u _ [uL,u_]

(1.8)(b)ff UL > uR, then

_U(_) - f(u([)) = rnin [_u - f(u)].
u E [u_,u,.]

It is easy to see that each expression on the right above is IApschitz with

Lipschitz constant max( lull ,luRI), and is a convex (concave) function of 4o

Also

u([)--ur., if _< nfm if(u)
u E lsL

u(C)'=u R, if _ > maxf'(u).
uEI_ "

Motivated by this, we consider a function,

perties:

z([), having the following pro-
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(a) z(0 _--_ UL , -- oo < E _ EL

(b) z(0 - uR, ER< E< ®

(c) z(0 is monotone.

We can now state our first new result:

THEOREM (1.2). z(E) = z(x/t) is the entropy condition satisfying solution to

the Riemann problem:

(1.8) z, + f(z)_ = o
z(x,O) -- UL, x < 0

z(x,O) - uR, x>0

where:

2

(1._)(ay(u) = f(UL) -- ELU£ + max [Eu - _. z(s) ds], if UL _z uR

(1.9)(b)_(u) = f(uL) - ELUL +
,r

mill [E. j_ z(,) a_] if "L> "R_<_,<_

The function f(u) is unique up to an additive constant among convex (concave)flux

functions.

Proof. We use Theorem (1.1) and equation (1.7)(a), if uL _ uR.

hag from EL to E, gives us:

Integrat-

ELUL-- :("L) + J'.dz(,) a_ = max [E. - :(.)1
u( I_

We then take the Legendre transform and obtain uniqueness, given that f(u)

convex.

is
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that - _i z(s) d_ is convex if UL < uR; thus theFor existence, we note

f(u) in (1.8a) is f: z(s) d_. Differentiating this serves tOLegendre transform of

verifythat z(_) isthe solutionto the Riemann problem.

The proof is similar for UL > uR.

Remark (I.1). If z(_) is strictly monotone when it takes on values between

uL and us, then f is strictly convex (concave) and z-l(u) exists. In fact

(1.11) ](.) = J',,_z-l(,) _ + ](.0.

Here z(_) is a single rarefaction wave.

Remark (1.2). If f(u) is not strictly convex or concave, then z(_)

singular, and conversely. For example, if

might be

(a) 40 = (_)_+lsgng, for O>a> - 1,

(b) 40 = sg__, I_ I > 1.

Then

-1_1.

(c) / 1}](u) = a_ + 1 a +o,: _ I'1_'+* + f(-1) - -7= '

Next we define approximate solutions to (1.1).

DEFINITION (1.1). A function z(g) having properties (1.8) is an approxi-

mate solution to the Riemann problem (1.1) if it satisfies the conservation rela-

tion:
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(1.12)

where _R, _L

f.2 z(E) dE = ERUR -- ELUL -- [f(uR) - f(uL) ]

are arbitrary constants such that:

ER _ max f'(u)
u _r_

EL _ min f'(u).

We have proven thatthe associatedf(u) isdefinedby

(1.13) f(u) = f(uL) - ELUL +

f(u) = f(uL) -- ELUL +

and

max gu - f.Z(S) ds],

_?

rain gu - f."Z(S) ds),

ff UL < UR

ff UL > UR

:("L)= f("L)

:("R)=/("R).

(The lasttwo equalitiesfollowfrom (1.12)and (1.13)).

We next considerthe entropy inequality(1.4)associatedwith (1.1).

the previous Lemma, we integrate (1.4) over the box

1"_= [(x,t)/ - TEL _ x < TER ,

arriving at (after division by T):

O_t_T]

(1.14) f'2" V(u(E)) d E _ ERV(UR) -- ELV(uL) -- [F(uR) -- F(uL) ]

Asin
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DEFINITION (1.2). We say the Riemann solver, z(g),

is consistent with a given entropy inequality, (1.4), if

approximating (1.1)

(1.15) V(z(0) < gRV(uR)- gLV(.D F(UL)].I

We define it to be consistent with all entropy inequalities if (1.15) is true for

V(u) = (u - c)+, for any constant c.

We have the following:

THEOREM (1.3). The approximate Riemarm solver z(_) is consistent with a

given entropy inequality (1.4), iff the inequality

f,,[_ V"(u) (](u) - f(u)) du < 0(1.16)

is valid; thus it is consistent with all entropy inequalities iff

(1.17) sgn(uR - UL) f(u) _ sgn(u R - UL) f(u) for all u _ .rl_

Remark (1.3). The inequality (1.16) is a Riemann solver version of a discrete

entropy-in-cell formula obtained by the second author for systems of equations in

[11] - equation (3.6). A similar result was used later in [12].

Proof of Theorem (1.3).

Inequality (1.17) easily follows if (1.16) is valid, for any convex V(u). It is,

however, instructive to prove it directly. By Theorem (1.2), and Lemma (1.1) of

[11], we have for any a E IRL-

d
z(g) - a = gd'--7 [g(z(_) - a) - _(z(_)) - _-"""f(a))J.
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We insert this in (1.15) for V (z) = (z - a)+. We see that (1.15) is valid iff:

sgn(uR- UL)[CR(uR- a) - (f(uR)-:(a))]

< sgn(uR- uL)[¢R(_R--a)-- (f(_R)-- f(a))]

which is equivalent to (1.17). To prove (1.16), we have

- ju _(_)V'(z(_))f,(_(_))a_

A

= _RV(uR)- _LV(.r_)- _ V'(.)f'(.)a.,

where we use the fact that, by (1.16) of [11],

Thus (1.15) is valid iff:

_z'(_)= r(_):'(_(_)).

o>_F(uR)- F(uL)- _ V'(_)i'(u)a_
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H. Numerical Fluxes and "E" Schemes.

We can approximate solution to (1.1a) with general initial data via a conser-

vation form discretization.

(2.1) u_+1=u_ '- _
At

Ax (h:("7÷ _' "_ - h:(,,:, ,,:- i))

= u_- _

Here u_i(x,t)

through

At

_x A_h:(.:+_,._.

is a piecewise constant approximation to u(x,t), defined

for

.A(x,O= "7

(_,t) _ 6 x [t", t" + At], t" = n At, ,, = 0,1,....

6 = (_1_._<x<_,, _)
_-T J*T

1

xj+½= (j+ _)_x, j=o,+l, ....

The numerical flux function hf(a,b) is a Lipschitz continuous function of

(a,b) for any fixed f, and is a continuous map from the space of real valued

continuous functions defined on some real interval, into the real numbers, for

fixed (a,b).

The most general class of schemes of this type whose solutions are known to
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converge to the correct physical solution for general f(u) are E schemes. These

were introduced and analyzed by the second author in a semi-discrete setting in

[11], and then in the fully discrete setting by Tadmor in [15]. See [12] for con-

vergence results for higher order accurate schemes approximating (1.1) when

f(u) is convex. (E schemes are at most first order accurate.)

An E scheme has a flux satisfying

(2.2) sgn(u R - ut,)(hf(uR,ut, ) - f(u)) _ 0

for any u E /RL-

A special E scheme is due to Godunov [4] - its numerical flux is canonical

in this class. This means

(2.3) h_(uR,ur. ) = sgn(u R - ut.) rain [sgn (u R - Urff(u)] = f(u(_)),
u(I_

where u(_) is the entropy solution to (1.1).

ThUS hf is an E flux iff

_=0,

(2.4) sgn(uR -- UL) (hf(uR,uL) -- h_(uR,UL) ) _ 0

We may write any 3 point flux as

1 1
(2.5) hf(UR'UL) = -2 [f(uR) + f(uL)] 2k QRL(UR -- uL)'

defining the numerical viscosity Q,_, which we take to be nonnegative.

A scheme has an E flux iff
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(2.6) Q,vd. > Q,'_/,

E schemes converge if their viscosities satisfy an upper bound.

1
(2.7) QRx < _,

and a CFL condition.

(2.8) k sup[f'(u)l < 1__
-- 2'

where the sup is taken over the convex hull of the initial data, and k = (At/Ax).

Godunov's scheme is obtained by solving two noninteraeting Riemann prob-

lems, equation (1.1), with initial data:

u(x,O) = _u)_l, x _ x 1

u(x,O) = u], x. 1 < x< x 1

u(x,O) = "u)+l, x, 1 < x.

We obtain aj(x,t ), and compute at t = At = kAx,

1
Ixf'(u)l < 7):

then average (for

1 u:+_ n_ X(hO(uy+l,uT)_ hO(u:, uT__))"f_,a,(x,a0 _ = . = u)

Thus, Godunov's flux, as defined by (2.3), on a grid moving with speed x = _t,

is
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h?(uR,uL) = f(u(E)) -- Eu(E),

hence, by formula (1.16)in [11],itfollowsthat

(2.9) u(E) = d h G
dE :,("R,UL).

Since.(E) is monotone, it follows that

d 2

(2.1o) sgn(uR- .L) _-_ h?,(.R,.L)- 0.

Thus, we shall consider the class of the 2 point (not necessarily E) fluxes,

which, for fixed uR, UL, are convex (concave) functions of E in the sense

described above. They must satisfy two conditions:

C(1) hf_(uR,uL) " f(uL) -- EuL, if E < EL < rainf'(u)
.rRL

h:pR,_L)-----f(uR)--E"R,ifE>--gR>--maxf'(.)
ZRL

d2

C(2) sgn(uR - UL) _ h/,(uR,ur.) _ O, for _Z,-< _ < /_R-

We next define a monotone function for any such h/(UR,UL) via a generaLiza-

tion of (2.9)

d

(2.11) z(E) = d_: h:'(_R'uD"

Conditions C guarantee that z(E) is an approximate Riemann solver for

(1.1). The corresponding flux function, fi(u), is obtained via the following:

THEOREM (2.1).The approximate Riemann solver, z(E), isthe solutionto the
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Riemann problem.

z, + A(_)x= o

z(x,O) =--UL, x _ O

where

z(x,O) =- uR, x > o

(2.12) ._(u)= max [_u+ hf,(UR,UL)I,_ UL_ _R

= rain [_ + hf,(uR,.L)l,if "L> uR-A(u) _ _ __ _.

PROOF. This is a direct consequence of Theorem (1.2), and conditions

Next, we may combine Theorems (1.3) and (2.1) m obtain:

THEOREM (2.2). The approximate Riemann solver, z(O,

entropy inequalities, iff hft(uR,uL) is an E scheme for all _,

iff

Co

is consistent with all

[L < _ _ [R , i.e.,

sgn(uR- _L)h/,(_R,_L)< sga(hR- _L)(f(u)-- _)

for all u between uL and uR and between _L and _R.

It is consistent with a single entropy inequality (where the entropy function

V depends on UL, UR, f and h) iff there exists some uo E .rRL, such that

for all [,

sg_(uR- "L)h:_(uR,UL)< sgn(uR-- "L)(f("0)-- _u0)

_L<--_ < _R-
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PROOF. By inequality (1.17) and Theorem (2.1), it follows that inequality

sgn(uR- .L)[_h + h:pR,_L)] < sgn(_R- _L)f(_),

for all the appropriate u and g, is valid iff z is consistent with all entropy ine-

qualities. The first result is immediate.

Inequality (1.16) is valid for some convex V E C 2 iff there exists some uo

in the interval for which

sgn(uR- uL)ih(.O)_ sgn(uR- _L)f(uo)

By Theorem (2.1), this is valid, fff

sgn[uR- "L][¢"o+ hf,("R,.L)]_ sgn(us - "L)f("o),

foran Z;_ [_L,_sl-

The second result is immediate.

Remark (2.1). If, in (1.1), we make a change of variables

then (1.1) is replaced by

(2.11)(a) a____u+ a__o._
at ax (f(u) - _u) o, t > o, -= < x < =

(2.11)(b) u(x,o) - "L, _ < o

u(x,O) =- us, x > o.

- 18-



Thus we can view hf_(uR,uL) as the numerical flux along the ray x = _t,

i.e. on a grid moving with speed _. Thus z(_) is the corresponding value of the

approximate Riemann solver on this ray.

Remark (2.2). Any numerical flux satisfying C(1), C(2), is exactly

Godunov's flux for fh evaluated on a moving grid.
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mo Examples of Numerical Fluxes, Transforms, and Approximate Riemann Solvers

We begin with the canonical example:

Example (3.1): Godunov's scheme [4]

As discussed in section II, the flux is defined by

(3.1)

where

h_(UR,UL) = sgn(uR - uL)minsgn(uR - uL)f(u)
u(I_

u([) is the entropy solution to (1.1).

Then for u ( IRr.

= f(u(K))[rffi0,

(3.2)(a) fhT(U) = convex hun of f(u), if ur. < uR

(3.2)(b) fhT(U) = concave hull of f(u), if uL > uR.

This is merely a restatement of Lax's well known result: the solution to (1.1)

is the same as would be obtained by replacing f(u) by its convex (concave) hull,

between u L and uR [8].

Example (3.2): Engquist-Osher scheme [2]

(3.3) 1 "lCf'(s)lash_O(uR,uL) = "_ (f(ue) + f(uL) ) --

(3.4) eO 1h_ (UR,UL) = -_ Or(UR) + f(uL)) -- (u L +

It is clear that condition C(1) is valid for

EL = rain f'(u), [R = max f'(u).
I r

r'lCe,(,)-OlasuR)- _-.L-

- 20 -



Also

(3.5)
1 1 _x

z(_,)= -_ (uL + uR) + -_ fuL sgn(_ - f'(s))ds.

Since

valid.

The transformed function, for uL < UR,

sgn(_ - f'(s)) is a non-decreasing function of _, hypotheses C(2) is

= f(u) if f is convex(3.6)(a)_ :hyo(u)

(3.6)(b)_ :hy:(u) = f(uL) + f(uR) -- f(u L + uR -- u),

satisfies

if f is concave.

This is the mirror image of the graph of f(u)

The chord is itself the graph of fh_ (U).

Example 3.3. Roe's (Murman's) scheme [13] (Not an E

in the chord connecting UL to uR.

scheme.)

(3.7)

where

1 1
h:(uR,uL) = -_ (f(uR)+ f(uL)) -- -_ I,I(_R- _L)

f(uR) -- f(uL)
(3.8) s =

uR - ut,

Thus

1
(3.9) h_(uR,uL) = -_ (f(uR) + f(uL)) -- } (uL I, - CI("L- "R)+ "R)- _-

= f(uL) --{UL, if g_<- s

- 21 -



= f(uR)- _uR,if_> s.

Hypotheses C(1) are dearly valid for any EL, [R

Also

(3.1o)

and

40 = "L,__ s

40 = uR,_> s

(3.11) :::(")=/("L)+ ("- "L)s,for, ( .rRL,

i.e.,the linearfunctionconnecting (UL,f(uL)) to (uR,f(uR)).

By Theorem (1.3)and (3.11),the approximate Riemann solverisconsistent

with allentropy inequalitiesiffthe chord connecting UL to uR liesbelow (above)

the graph of f(u) if UL < uR (Ur.> uR).

Various obvious entropy "fixes"of Roe's scheme and for the extensionto

systems exist- see e.g.[4].

Example (3.4).Lax-Friedrichs'Scheme.

(3.12)

for

I
h_F(UR,UL) = -_ Or(UR)+ f(uL)) -- __

O<Q_ 1
_, Q constant.

Thus

1

2x Q(.R - ur.)

(3.13) LF 1a_ ("R,"L)= g 0_("R)+ d0'L)) - (uR+ .,.)
"1
2_. Q(uR - UL)

- 22 -



for

(3.14) gL= s --R <_;<s + 12= gR-
k k

Hyothcsis C(2) isobviouslyvalid.

Thus, we have:

(3.15) zff,) =- UL, _,< _L

.

z(r,) = _(uR + UL)= u,,,, _L_ _ _ _R

and

z(_) = uR, _ > _R.

(3.16)(a) if _L< uR

1

2k O(uR- UL) for U_Um.

•

2k Q(uR - UL) for u >-- urn.

(3.16)(b)if uL > UR

1
2k Q(uR - UL) for U _ Um.

= - (u - urn) + _ (f(uR) + f(uL) )

1
2x Q(uR- UL) for u -- U,n.
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A

Thus f_(u) isa picccwiselinearfunction whose graph liesbelow (above)

that of f(u) if UL < uR, (UL > uR), if the CFL restriction:

(3.17) k(s + max [f'(u)]) _ 12,

isvalid,in which case hypothesisC(1) issatisfied.

Example (3.5) Lax-Wendroff scheme [9], (sex_nd order accurate, without

entropy fix).

1 k
(3.18) hJ'W(uR,UL)= --_O_(,,R)+ f(UL)) -- -f am S(,,R -- UL)

where

am = f'(Um)

Thus

(3.19) h_W(uR,uL) = -_O_(_R)+ f(_L))- (uR+ UL).

× (a,,,- _)(_- _)(,,R- UL).
2

We scc for g = s, that the fight side of (3.19) is

f(uR) - s uR = f(uL) -- SUL,

Letting _ = a m - l/A, also gives us the value: f(uR) - (am - l/k) u R.

only way to have hypothesis C(1) be valid is by letting

Thus the

h_W(uR,UL)=--h_,(uR,_L)
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Both these schemes have the same unfortunate behavior at expansion shocks mov-

ing with speed _, as was seen in [2], [10].

Example (3.6). Lax-Wendroff scheme modified with entropy fix [10].

(3.20) h_ WE- 1 k s2CuR _ uL),- -_ O_(uR)+ Y(UL))- "$

C If'CuR)- f'(UL)I("R- "L)
2

where C > O, will be chosen below.

Thus

(3.21) h_ WF"= -_ (f(uR) + f(uL)) -- (uR + uL)

C
×(s - 02(.R- uL)- T 10"(uR)- f'("L)I("R- "L).2

A simple calculation gives us

(3.22)(a) _1) = s +

1
m

-1+ (1-4CLIA+f'[)2

2k

(3.22)(b) _1) = s +

1

1 - (1-4Cu IA+y'I)2
2k

where we defined: A+f' = f'(uR) - f'(uL).

It follows that:

(3.23) hf_l ) = f(uL) - [_l)u L.
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hfc_) = f(uR) -- _l)u R

under the restriction:

l_ 1) = I_R, we need

(3.25) s+ max _f'l< C la÷f'l
I#z

In general,thisrestrictionforcesthe scheme to be only firstorder accurate.

we omit itand def'me ,.Lwe,,f_ as in (3.21)for _I) _ _ _ _I), and set

Thus

(3.26) h_ wE = f(uL) -- _UL, !:,_ _I)

a_w_"=/(.R)- iuR,_,> _,I_I).

The resulting z(_) is defined to be

(3.27) z(_) - uL, _ _ _1)

zCi) = um+ x(¢ - _)(.R- uL), _f._)< _ < _i_)

z(_;)= .R,i_)< _;

By (3.22) and (3.25), this function is monotone, thus condition C(2) is valid.

The associated transform is defined via

(3.28) for (UL < uR)
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A

fl_wE(u)= !:,_1)(u- UL) + f(uL), if UL _ u _ (_})-s)k(uR - UL) + urn.

^ (u- u_)2 1 c

/::Ku)= 2£-(u_- 7L)+ _-(f(uR)+/(UL))--T I_+;'I(uR- _L)

::w,(u)= 61)(u- "R)+f("R),if(6I)--,)X(,R--uL)+ u__ _< us.

The fluxfunctionisdefinedanalogouslyfor uc > urn.

Although Theorem (2.1)guaranteesthatthisscheme cannot possiblysatisfy

allentropy inequalitiesand staysecond order accurate,a singleinequalityfollows

easlyunder mild restrictions.For example, if uL < uR, we might take

1 C
(rcuR)+:(_,))- T IA+Z'I(=R- =L)_:(_)-

or

f(uR)+ f(uL)--2f(Um)
(3.29) (UR--UL)IA+:'I _C.

The quantityon the leftabove isbounded above by a positivenumber as uR -.UL

so (3.29) is possible for a fixed constant independent of I UR -- UL ]"

1
For a given fixed entropy, say V(u) = -_ u2, the quantity C can be chosen

large enough so that inequality (1.16) is valid. See [10] for related estimates.
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IV. Comparison with Other Approaches

In [6], the authors construct a monotone, piecewise constant, approximate

Ricmann solver for (1.1) as follows:

(4.1) z([) _-- UL, oo< _ _ _1)

_(_) ___, _/_1)< _ < _1)

z(_) -- uR, _) < _ < _.

Consistency with conservation means

(4.2) [_l)(u L - u--) + [_l)(ff _ UR) + f(uR) -- f(uL) = O.

The associated flux function is piecewise linear, and defined via:

(4.3) ](u) =f(uL) + [_l)(u -- UL), for lu-- uLl < Iff - ULI

:(=): y(=R)+ c_)(u- =R), for lu- =_1_ I_- =_1.

By Theorem (1.3), a necessary and sufficient condition that z([) be con-

sistent with all entropy inequality is that the graph of ](u) be below (above) that

of f(u) if uL < uR (u L > uR). This is implied by the restrictions imposed in [6].

If uL is connected to uR via a single entropy condition satisfying shock, we

may take [_1) = [j_l) = s, i.e., we have Roe's transform function.

If we take [_1)= s - Q/k, [_1) = s + Q/k, under hypothesis (3.19) we

see that the Lax-Friedrichs flux transforms to f(u), with

1
= _(UL + uR) : ,,,,,.
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In [5] the authors consider an approximate solution of (1.1) which is not a

similarity solution. It could be modified slightly keeping its essential properties so

that in this scalar case it becomes

(4.6) z([)--ut,, -oo<[<s- 8

z(0 = uL s-s<_<s

z(O = u_, s_r,<s+s

z(O -- uR, s+8<_<oo,

where 8 > O, will be chosen below.

We futher restrict z to be monotone, which was not explicitly done in [5].

For this function to be consistent With conservation form means that:

_L('--_ --EL)+ u;.s + _ _ + _R(_R- _ - _)

= _RUR -- _LUL - (f(uR)--f(uL))

or

(4.7) (._.- UL)+ (u;- "R)= O.

Harten and Lax compute

"L = UL-- X(gLR-- g("L))"

uR= .R - x(g(.R) - gLR)

Here, in our language:
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(4.8)(a)

and

(4.8)(b)

g(u) = f(u) - _ = YAu).

gLR= h:,(_R,_L),

for somenumericalflux by.

Equality (4.7) is automatically valid in this ease. In order that z(_) be

monotone, it is necessary and sufficient that

(4.9)(a) s_(uR- _L)(h:,(_R,UL)--/,(_L))< 0

(4.9)(b) s_n(uR- "L)(h:,("R,UL)-- :,(_R))< 0

(4.9)(c) [uR- =LI > × s_(uR -- =L)[:s(uR)+ :,(_L) -- 2h:,(=R,=L)].

The inequalities (4.9)(a) and (4.9)(b) are valid iff the associated 3 point scheme

is TVD, hence only first order accurate - see e.g., [15]. Inequality (c) is merely a

CFL restriction.

The associated

graph connects the

function f(u), is, of course, again piecewise linear° Its

four nodes (uL, f(uL)), (u_, f(uL) + (s - 8)(u_ - uL)),

(u_,f(uL) + s(u_ -- u_.)+ (s -- 8)(u_.-- uL), (uR,f(uR)).

The slopesof thesethreelinesare s - 8, s, s + 8 respectively.

Again the graph of thisfunctionliesbelow (above) thatof f(u) on _rRL for

uL < uR, (uL > uR) iffallentropy inequalitiesare satisfied.

Harten and Lax define hf_ such that
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=L= UL+ Xl3C=R-- =L), =R= uR-- Xl3C=R-- UL);

1
thus given kt3 _ _-, z(_) is a monotone function. The inequalities which are

necessary and sufficient for consistency with all entropy inequalities are:

(r_(u)- ]_(UL))
(4.10)(a) 8k_ > -rain > 0

u_1_ uR - UL

f,(uD- f,(u)
(4.10)(b) 1 > max

,,_z._ a(uR- u)

f,(UL)--f,(u)
(4.10)(c) I m max

.,_.r,, _(,,- UL)

These inequalities are all compatible. If we take, for example, 8 = 1A, the

last two become CFL conditions, and the first is an improvement over the

corresponding estimate in [5].
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